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Since determination of temperature distribution inside the laser gain medium is essential for the evaluation of induced 
thermo-optic effects on laser operation, in this paper, an analytical model is presented for temperature distribution of edge 
diode-pumped laser slab by Green’s function method. To solve the heat equation, Robin boundary conditions  is considered 
because four lateral faces of slab are cooled by water. For an example, the 2D and 3D temperature distributions are plotted 
and our analytical model is validated by numerical solution based on Finite Element Method (FEM). The results show that 
our model has very good agreement with numerical solution. Furthermore, dependence of the temperature distribution on 
absorbed pump power is shown. 
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1. Introduction 
 

High-power high-efficiency Diode-Pumped Solid 

State Lasers (DPSSL) have been widely used in military 

and industrial applications. But these lasers (especially rod 

geometry lasers) are always limited by the onset of 

deleterious effects such as thermal lensing, stress 

birefringence or biaxial focusing. To overcome these 

limitations on rod-shaped lasers, a number of designs 

including axial-gradient lasers, slab-shaped gain media, 

disk, and active mirror lasers  have been proposed. Among 

them, the rectangular-slab laser is of great interest because 

it provides large cooling surfaces, and significantly 

reduces thermal stress-induced birefringence [1-4]. The 

slab gain medium geometry with zigzag laser propagation 

has traditionally been used to scale solid-state lasers to 

high powers by averaging out the thermal gradient induced 

distortion over the optical path [5-8]. Slab lasers are 

basically of three main types: end-pumping, edge-

pumping, and side-pumping. End-pumped slab is attractive 

for good overlap between the pump volume and the laser 

mode, but suffers from small pump area, which limits the 

capability in power scaling per volume of the slab [9, 10]. 

In side-pumping, because of the short absorption path 

(thickness of slab), the pump efficiency may be relatively 

low unless a highly doped slab is used. In an edge-pumped 

slab, the pump light is incident on the middle-sized faces 

and propagates in the general direction of the slab’s width . 

Pumping along the slab width allows a longer absorption 

path and hence lower doping; moreover, there are better 

choices for cooling since the largest faces of slab are not 

pumped [11-15]. Therefore, the edge-pumped slab laser 

has engineering advantages in high power slab laser’s 

applications. 

Optimizing the laser operation in presence of thermal 

effects needs temperature distribution inside the gain 

medium. Therefore, determination of temperature 

distribution inside the laser gain medium is essential for 

the evaluation of induced thermo-optic effects on laser 

operation. Solving the heat differential equation and 

considering boundary conditions give the temperature 

distribution. To obtain the temperature distribution of laser 

crystal, there are many software such as ANSYS, 

COMSOL, Flex PDE and LASCAD all of which are based 

on finite element method (FEM). However, an analytical 

model can be a more straightforward method for this 

purpose. For laser rod, many analytical models of 

temperature distribution have been reported [1,16-21]. 

Analytical calculations of the thermal effects in slab 

geometry lasers have been made by Eggleston et al. [16] 

and Kane, Eggleston and Byer [22]. These authors were 

primarily concerned with applying their analyses to lamp-

pumped slabs. The thermal effects of an Nd:YVO4 slab 

laser was reported by Ma et al. [23]. Their model is based 

on simple boundary conditions in which  the slab was 

assumed to be infinitely long along one of the axes of the 

Cartesian coordinate system. Shi et al. [24] also reported 

the solution of the heat equation for a cubic geometry. 

They, too, adopted a simple boundary condition in which 

the temperature of all six faces was taken to be zero and 

constant. Only recently, did Sabaeian et al. [25] introduce 

an analytical solution of the heat equation for a 

longitudinally pumped cubic solid-state laser (End-

pumping). 



370            M. H. Moghtader Dindarlu, M. Kavosh Tehrani, Gh. Solookinejad, A. Maleki, M. Jabbari, M. Nafar, R. Tofigh Movalu 

 
In this paper, for the first time to the best of our 

knowledge, a new analytical model of the temperature 

distribution is presented in edge diode-pumped laser slab 

with Robin boundary conditions  by Green’s function 

method. Pumping is done from the middle-sized faces of 

laser slab. Cooling is done by water sealing technology in 

which four lateral faces of slab are in contact with water. 

Two end-faces are in contact with the surrounding air. 

Therefore, we should consider Robin boundary conditions 

for the solution of the heat equation that is a precise and 

real boundary condition. Our analytical model is validated 

by numerical solution based on FEM. The results show 

that our model has very good agreement with numerical 

solution. This model can be used to extract other models 

for thermal effects such as thermal stress, stress 

birefringence and thermal lensing. 

 

 

2. Heat equation 

 

The three-dimensional heat conduction equation is 

written as 
2 ( , , ) ( , , ) 0K T x y z Q x y z                   (1)                                                                                       

where K is thermal conductivity and ( , , )Q x y z  is the 

heat source defined as deposited power per unit volume. 

Fig. 1 shows that width, thickness, and length of laser slab 

are in x, y, and z directions, respectively                                                             

( 0 , 0 , 0x a y b z c      ). Also, it shows which 

slab is pumped from two-edges (planes 0,x x a  ). 

 

 
Fig. 1. The edge-pumped laser slab geometry in  

Cartesian coordinate 

 

 

3. Pump configuration 

 

The main challenge for the edge-pumped slab 

geometry is to achieve uniform pump absorption along the 

width since optical distortions of the crystal in this 

direction are not compensated by the zigzag path. For 

unsaturated absorption of the pump light, achieving 

perfectly uniform pump absorption is not possible. The 

slab edges near the pump source are always pumped 

harder than the slab center [26]. For edge-pumping 

configuration, Rutherford et al. showed that the absorbed 

pump power density as a function of the position x  along 

the slab width is given as Hyperbolic function. The 

validity of this model was shown by comparison with 

experiment [27]. Consequently, the relevant heat source 

can be written as follows:  
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         (2) 

where absP  is absorbed power in the laser slab,   is the 

fraction of absorbed power converted to heat,   is pump 

absorption coefficient, pR  is the average pump 

reflectivity of the edge faces, L  is the pump length and  

b is the thickness of laser slab.  

 

 

4. Boundary conditions  

 

We consider a cooling chamber for laser slab in which 

four faces ( 0, , 0,x x a y y b    ) are in contact with 

water. In other words, these faces transfer heat by force 

convection. Therefore, for them, the following boundary 

conditions are assumed: 
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where wh is force convection heat transfer coefficient with 

cooling-water and w
T is cooling water temperature. Two 

end-faces ( 0,z z c  ) are in contact with the 

surrounding air. In other words, these faces transfer heat 

by free convection. Their boundary conditions are written 

as: 
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( , , )

( , , ) , 0,a
a

T x y z h
T T x y z z c

z K


  


 (5)                                                                                                     

where ah is free convection heat transfer coefficient with 

air and aT is room temperature. According to equations (3-

5), Robin boundary conditions will exist for heat equation. 

Since these boundary conditions are real and precise, we 

solve heat equation and introduce a new analytical model 

for temperature distribution. Usually the laser slabs have 

the Brewster-angled input and output faces due to the 

convenient alignment, minimum optical loss and 

maintaining polarization. These slabs consist of a doped 

region diffusion bonded to un-doped end caps where the 

doped region is only pumped and cooled. It means that  

only this part is placed in the cooling cavity (in contact 

with water). Therefore, we can use the Green's function 

method for this region. Even if these end caps are also 

doped, again usually they are placed out of the cooling 

cavity. It means that we can use the Green's function 

method for pumped and cooled region. 
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5. Solution and results 
 

According to equations (1-5), we can obtain the 

Green’s function for our problem. The Green’s function 

construction is stipulated by solving homogeneous 

equation (1), or the Laplace equation, by satisfying the 

boundary conditions and by its holding throughout the 

domain [28]. Consequently, the Green’s function becomes: 
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where , ,n m s   are positive roots of the following 

transcendental equations: 
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By using Green’s function (6), we solved the heat 

equation; and consequently, the following expression was 

obtained for temperature distribution (The details of the 

calculations have been presented in Appendix A). 
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(16) 
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In equation (16), there is a summation on m, n, and s 

parameters that upper bound is infinity. The indexes of 

summation indicate the positive roots number of 

transcendental equations (13-15). In process of extracting 

result, an initial value is chosen for the upper bound of 

summation (for example 50) then by increasing it, the 

result is converged to the accurate and final result.  In the 

next section, to get the results and graphs, we have choose 

700 for the upper bound of summation. Therefore, it can 

be said that a meaningful limit for summation is 700. 
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6. Comparison with numerical solution 
 

In this section, our analytical model is tested as an 

example and it is compared with the numerical results 

obtained by FEM. In this example, we consider dual edge-

pumped Nd:YAG laser slab with dimensions 

12 6 100 mm  . In this configuration, the slab is pumped 

from the middle-sized faces ( 0,12mmx  ) as shown in 

Fig. 1. It is assumed that four lateral faces of slab are 

placed in water-cooling cavity in which water (with 

temperature of 298 K) flows at a specific rate on these 

faces. Two end-faces of slab are in contact with the 

surrounding air. All parameter values are listed in Table 1. 

Our analytical model can be applied for all of laser slab’s 

geometry (With any thickness and cross -section 

dimensions such as cube-shape crystal) if the absorbed 

pump profile equal to equation (2) for edge-pumping 

configuration. 

 

 
Table 1. Numerical values of parameters 

 

Paramete

rs 

Parameter name Values 

(units) 

a Width of slab 12 mm 

b Thickness of slab 6 mm 

c Length of slab 100 mm 

  Fraction of absorbed 

power converted to heat  

0.3 

absP  Absorbed pump power  600 W 

  Absorption coefficient 10.35 mm

 

p  Width of the Gaussian 

distribution in x and y-

direction 

3 mm 

L  Length of pumping 100 mm 

K Thermal conductivity 1 1
10.5 Wm K

 

 

ah  Free-convection heat 

transfer coefficient with 

air 

1 2
50 WK m

 

 

wh  Force convection heat 

transfer coefficient with 

cooling-water 

1 2
20000 WK m

 

 

aT  Room temperature 298 K 

wT  Cooling-water 

temperature 

298 K 

 
Fig. 2. 3D temperature distribution in x-y plane at  

z = 50mm for edge-pumped slab  

 

 

 
 

Fig. 3. 2D temperature profile in x-y plane at  

z = 50mm for edge-pumped slab 

 

 

To investigate the temperature distribution in the 

thickness direction of the slab, we drew the temperature 

distribution along the y-axis (at 50mm, 6mmz x  ) as 

shown in Fig. 4. In this figure, the solid curve shows the 

results of our analytical model and the dotted curve shows 

the numerical results. It is clear from the figure, that there 

is very good agreement between our analytical model and 

the numerical solution. According to Fig. 4, the 

temperature asymmetry in the direction of the slab 

thickness is clearly shown. 

According to equation (16) and Table 1, the three-

dimensional temperature distribution in x-y plane at 

50mmz  has been plotted in Fig. 2. The two-

dimensional temperature profile of Fig. 2, has been 

presented in Fig. 3. It is apparent from Fig. 3 that 

temperature distribution of laser slab is symmetric in x-

direction (width of slab) and y-direction (thickness of 

slab).  
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Fig. 4. Temperature distribution along the y-axis (slab  
thickness) at z = 50mm, x = 6mm for edge-pumped slab 

 

 

We then drew the temperature distribution along the 

x-axis (at 50mm, 3mmz y  ) as shown in Fig. 5 

(maximum temperature of laser slab is 317.2 K). In this 

figure, also good agreement is seen between our analytical 

model and the numerical solution. Fig. 5, clearly shows 

that the temperature distribution is symmetric in the width 

direction of the slab for dual edge-pumping configuration. 

According to this figure, the temperature of pump faces                 

( 0,12mmx  ) is about 304.9K. 

 

 

Fig. 5. Temperature distribution along the x-axis (slab  

width) at z = 50mm, y = 3mm for edge-pumped slab 

 

 

Finally, the temperature distribution along the z-axis 

(at 6mm, 3mmx y  ) has been drawn in Fig. 6, for 

edge-pumping. In this figure, the constant temperature 

along the slab length can be seen. Results of our analytical 

model and the numerical solution are also close together. 

 

 

Fig. 6. Temperature distribution along the z-axis (slab  

length) at x = 6 mm, y = 3 mm for edge-pumped slab 

 
 

7. Dependence of temperature distribution on  

    absorbed pump power 
 

To show the dependence of the temperature 

distribution on absorbed pump power, we plot the curve of 

temperature (along of x-axis) for various absorbed pump 

power. According to the example presented in previous 

section, the parameters of Table 1, four absorbed pump 

power ( 500,600,700,800WabsP  ), and equation (16), the 

temperature distributions along x-axis for edge-pumping 

configuration is shown in Fig. 7. This figure shows how 

the temperature of laser slab rises by increasing the 

absorbed pump power. 

 

 

Fig. 7. Temperature distribution along the x-axis (slab width)  

at z = 50mm,  y = 3mm  for various absorbed pump power  

 
 

8. Conclusions 

 

Since, to the best of our knowledge, there is no precise 

and comprehensive analytical model of temperature 

distribution for edge pumped laser slabs  with Robin 

boundary conditions, we derived an analytical model for 
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temperature distribution of laser slab. Our analytical model 

was tested for an example (edge diode-pumped Nd:YAG 

lase slab). By drawing many temperature curves, there was 

very good agreement between our analytical model and the 

numerical solution. This model can be used to extract the 

other models for thermal effects such as thermal stress, 

stress birefringence and thermal lensing. For future 

investigation, this method can be considered for 

temperature distribution of anisotropic laser slabs such that 

Nd:YVO4 and Nd:GdYVO4. Also, it can be extended for 

face-pumping configuration of laser slabs.  

 

 

Appendix A 

 

Heat equation (1) can be rewritten as follows: 

 

2 ( , , )
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Q x y z
T x y z

K
                      (A.1)                                                                                                                        

 

According to the obtained Green’s function (6) for 

heat equation (A.1) and Robin boundary conditions (3-5), 

the following solution can be written [28]: 
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In equation (A.2), the triple integral (first integral) is 

responsible for temperature difference caused by the heat 

deposited in the laser slab, and six double integrals satisfy 

the boundary condition on four lateral faces of laser slabs. 

First, the triple integral is solved. By substituting equations 

(2) and (6) in the triple integral, it can be written as 

follows: 
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                                                                               (A.3) 

 

Now, the solutions of three integrals are found in 

braces. 
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sB d                                (A.4)                                                                                                                                                             

 

By substituting equation (9) in (A.4), after 

simplification, we can write: 

 

2sin
2 2

s
s

s

c c

B







   
   
                          (A.5)                                                                                                                                                   

where cos sin
2 2 2

s a s
s

s

c c h c

K

 



 

     
     
     

 according to 

the equation (9).  
 

The second integral is       

 

0

( )

b

mC d                                 (A.6)                                                                                                                                                   

 

By substituting equation (8) in (A.6) and after 

simplification, it becomes: 

 

2sin
2 2

m
m

m

b b

C







   
   
                       (A.7)                                                                                                                                          

 

The third integral is  

 

0

( )cosh
2

a

n

a
D d     

  
    

        (A.8)                                                                                                                       

 

By substituting equation (7) in (A.8), after calculating 

and simplification, we can write: 
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 

2

2

2 2

2

sin( ) sinh cosh
2 2

1
2 sinh cos

2 2

2
cosh sin

2 2

w
n n

n
n

n n

n w n

h a a
a

K

a a
D

h a a

K

  
 

 


  

  



  




     
         

 
    
    

    
    

    
    

    
                                                                                (A.9) 

 

Now, the triple integral (A.3) can be rewritten as 

follows: 

 

 
 

0 0 0

2 2 2 2 2 2
1 1 1

( , , )
( , , , , , )

( ) ( ) ( )

a b c

n m s

n m s n m s n m s

Q x y z
G x y z d d d

K

x y z
A B C D

     

  

     

  

  



 
 

  

  

                                                                                         

(A.10) 

 

where 
 

exp
2

1 exp

abs

p

a
P

A
KbL R a


 






 

 
 
 

  
 

 

Now, six double integrals  in equation (A.2) should be 

solved. Here, the first and second integrals  are written as: 

 

0 0 0 0

( , , ,0, , ) ( , , , , , )

b c b c
w w w wh T h T

G x y z d d G x y z a d d
K K

          

                                            (A.11) 

 

According to equation (6), we have: 

 

 2 2 2 2 2 2
1 1 1

( , , ,0, , )

( ) (0) ( ) ( ) ( ) ( )n n m m s s

n m s n m s n m s

G x y z

x y z

 

       

     

  

  



 
 

 (A.12) 

 

 2 2 2 2 2 2
1 1 1

( , , , , , )

( ) ( ) ( ) ( ) ( ) ( )n n m m s s

n m s n m s n m s

G x y z a

x a y z

 

       

     

  

  



 
 

  (A.13) 

 

Since (0) 1n  , by substituting equations (A.12) and 

(A.13) in (A.11), equation (A.11) can be rewritten as 

follows: 

 

 

 
1 1 1

2 2 2 2 2 2

0 0

( ) ( ) ( )

1 ( ) ( ) ( )
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K
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 
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 

                                                                                            (A.14) 

In equation (A.14), the first and second integrals are 

equal to C and B, respectively. Therefore equation (A.11) 

becomes: 

 

 
 

2 2 2 2 2 2

1 1 1

1

( ) ( ) ( )

1 ( )

n m s
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n
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      (A.15) 

where 1
w wh T

q
K

 . 

Similarly, the third and fourth double integrals will 

become: 
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      (A.16)                                                                                              

 

where 

 

0

2sin
2 2
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n
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n

n
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

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
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   
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            (A.17)                                                                                                              

 

Also, the fifth and sixth double integrals will become: 
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 22 2 2 2 2 2

1 1 1
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1 ( )n m s

s

n m s n m s n m s

x y z
q CE c

  


     

  

  

 
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(A.18) 

 

where 2
a ah T

q
K

 . 

 

Consequently, according to equations (A.2), (A.10), 

(A.15), (A.16), and (A.18), the expression of temperature 

distribution can be derived as follows: 
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                                                                                         (A.19) 
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